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E F F E C T  OF E N E R G Y  D I S S I P A T I O N  

O N  T H E  S H A P E D - C H A R G E  F L O W  R E G I M E  

Yu. A. Trishin UDC 532.522+536.422.1 

Convcrgencc of a viscous shaped-charge liner to the symmetry axis is dcscribed. It is shown 
that energy dissipation has a significant effect on the process cousidcrcd. Convergence at small 
angles can lead to a strong phase explosion of the metastable liquid of the inner, strongly 
hcated, laycrs of the liner, wh, ich is comparable to TNT e:~plosion. An inc~ase in the angle of 
convergence results in a weak phase "explosion," which leads to die, rent behavior of shaped- 
chawe jets for different types of liner material. 

The nmin difference in the  a('ti(m of plane shat)ed charges and charges with axisymmetric liners lies 
in the fact that  during acceleration by an explosion, a wedge-shaped liner does not undergo considerable 
(tefornlations. An a.xisymmetric liner eonq)ressed by the detonation products of an explosive is subjected to 
large (leformations. un(ter which the layers of the liner slide over each other. In this case, convergence of" 
the liner to the symme, try axis is significantly affected by the energy-dissiI)ation mechanisms. For explosively 
(triven charges with t)lane liners, energy dissipation is i)ra('tieally absent even in acceleration by a gliding 
det(mation wave l)e('ause there is no sliding of the layers of tile plate. This is suggested by tit(', shape 
of indicating wires i)resse(l in the plate [1]. After oblique (.ollision of the I)lates, the shape of tile wires is 
considerably distorted, especially near the ('ollision surface. Hence, for plane ('harges, ([issipati(m of mechanical 

energy is possible only at the stage of collision and jet  ibrnlation. 
Considering explosive compression of cylindrical liners, Matyushkin and Trishin [2] showed experimen- 

tally and theoretically that  convergence of tile liner to tile symmetry axis is (lescrit)ed most ade(luately by the 
model of a Newtonian liquid. Hence, 1)ecause of the action of viscous for('es during collapse of axisymmet- 
ric liners, tile energy-dissil)ation process should change tile characteristics of the shal)ed-eharge jets formed 
d(~l)en(ling (m the tyl)e of liner material. In addit ion,  it is I)ossible to choose charge and cylindrical-liner 
i)arameters su('h that the initial kinetic energy of the  lizmr is completely ('ouverted to thermal energy an(1 tim 

liner stops upon reaching a cer ta in  radius R* [2]. 
For approximate calculation of a shape(l charge with a conical liner, tile liner can be divided into a 

nmnber of rings by sections perpendicular to the axis of the cone azz(1 the z:ings can be assumed to move 

indei)endently of each other. 
For inertial motion of a ring of a viscous incompressible liquid. Matyushkin and Trishin [2] obtained 

the folh)wing equation of mot ion  for the inner surface of a cylindrical liner of ra(lius R: 

R/~ = (R0/~0 + 41/) V/ln (Rm/Ro) _ 41~. (1) 
V/In (Rj /R)  

Here Rt is the outsi(le radius, Ht0 is the insi(le radius at t = 0. R0 and R0 are the radius, respectively, of tit(, 
inner surface o[ the liner and its velocity at t = 0, azt(l I / is  the kinenzati('-viscosity (.oeffricient. 
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TABLE 1 

r(}, cm r, cm 

1.00 ") 

1.01 (. 

1.02 0.36 

1.03 0.39 

1.05 0.-14 

1.07 OA8 
t .09 0.53 

1.10 0.55 

ATe, K H , J / g  
1710 650 

1420 540 

1210 460 

1050 400 

830 320 

680 260 

550 210 

510 195 

Fe 

ATI ,  K 

5550 

4600 

3910 

3090 

2680 

2200 

1790 

1660 

H, .11g 
3550 

2940 

2500 

1980 

1720 

1410 

I I 5 0  

1070 

TABLE 2 

~), cm r~ Cln 

1.00 0.10 

1.01 0.17 

1.02 0.22 

1.03 0.26 

1.05 0.33 

1.07 0.39 

1.09 0A5 

1.10 0.47 

.T, K 

i700 

.)760 

[910 

[500 

LO60 

820 

640 

590 

H,  J / g  

2180 

1050 

730 

570 

405 

310 

240 

225 

From the condition of incompressibility of the liner it follows that  

R~ - R 2 = n~0 - ~ = A 2. (2) 

The specific power of dissipation forces is 

X = __dE = 4 .  ( R / ? ) 2  

dt r 4 

where r is an indcpend'ent variable (R ~ r ~ RI) and E is the specific energy. From the incompressibility 
of the, liner it follows that r2(t) - R2(t) + r~ - R~, where ro is the initial radius of a particle located in the 

depth of the liner (Ro ~ ro ~ Rm). Hence, in the adiabatic approxinmtion for a particle with radius to, we 
obtain the temperature  increment 

t 
4u R 2 R  2 

A T  = ] - 7  ] (R2 + ,.~ , ,  dr. (3) 
- R o)- 

0 

where c is r~he specific heat of tile liner. It is possible to find an approximate solution of Eq. (3), taking into 
account that at the initial stage of colhq)se, /~ differs from/~0 only slightly [3]. Then, relation (3) becomes 

t .  t 

A T  = AT~ + AT2  = --7-R5 (R  2 + ro _ R.2o)2 elf + --c . (n'-" -7 r-7~--- R0) 2 at. (4) 
0 t .  

where t, is the time during which/~, differs fi 'om/?o only slightly. 
If we set R = Ro - / ~ o  t, the first integral ATI is easily evaluated: 

AT, _ 2u/~o [ R .  Ro 1 (Ro - R , ) ~ ]  
' ', ,2 + ., ~., arctan - 2 

c. R ~  + ,.2 _ R 5  'o  v/r '~ - R o r 6 - R o + RoR ,  

To deterlnine AT2 when the inner surface of the ring approaches the taxis (R ---+ 0), we expand the 
denominator of relation (1) in a series and, using (2), we ol)tain its value (1/2)In ( A " / R  2) = (4/3)(1 - 3s) 
with accuracy uI) to r = (R2 /A2)2 .  Then, from Eq. (1) we have 

R 'e = ( ~  + b/~) e x p  ( - , ~ )  - t , / , .  (5) 

where a = (2 .598/A2)(RoRo + 4u)(ln ( R m / R o ) )  t/2, b = 0.667A2a - 8u. and r = t - t,. From relations (4) 

and (5) we obtain 

c e x i , ( - , , , ~ ) + B  l + B  + l n  T T ~  ' 

where B = (r~ - R~ - b / a ) / ( R ~  + b/a) .  Results of calculation of the temperature  distribution ATt over the 
thickness of copper and iron rings with R,  = 0.3Bo are presented in Table 1, and the temperatures AT2 
for cot)per rings at R = 0.1R0 are given in Table 2 ( A T  = ATI  + AT2).  For both rings, the initial velocity 
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is /~o = 105 cm/sec and tim initial geometrical dimensious R0 = 1 cm and Rt0 = 1.1 cm are identical. 
They differ only in the kinematic-viscosity coefficient u, which, at an initial strain rate of about  105 sec -L. is 
(0.7-1.0) �9 l0 t cm2/se, c for copper [2, 4] and (3.8-5.1)- 10 4 cm2/sec for iron [5]. For radial convergence of a 

cylindrical liner, the strain rate is defined by 

& ~ 

where 50 = Rm - Ro. In the calculations, the specific heats of copper  and iron were set equal to 0.382 and 
0.64 J / ( g .  K). 

The  heating due to viscosity is nonuniform over the thickness of the liner material and increases during 
convergmwe of the liner to the center. Maximum increase in t empera tu re  is attained on the inner surface 
of the liimr. An increase in temperature  changes the properties of the liner material and, in particular, the 
dynamic-viscosity coefficient. 

According to the Frenkel '-Airing theory [5], developed for liquids and used in [6] to describe experiments 
on shock-wave loading of metals up to the melting point, the dynamic-viscosity coefficient 'q of a liquid is 
related to the temperature T and the degree of compression c~ by the formula 

',l(a, T) = '/0o exp [E~,(a) /T].  

From physical cousiderations it follows that for the work related to viscous motion during formation of 
vaca~lcies, the activation energy Ea has the fbrm Ea = ,4 + B o  "3. Th e  constants A and B were determined 
from shock-wave, exi)eriments in metals. 

For alumimnn and lead, it is estal)lishe(1 experimentally [6] tha t  with increase in the shock-wave 
intensity, the viscosity initially incre~ses and then, passing through the mmxiunnn at ~ ~ 1.4, decreases. The 
nontrivial (lel)endence of tile viscosity coefficient on the shock-wave intensity can be explained qualitatively 
l)y competition of the processes related to compression of the material  and thernml processes. 

A similar situation is observed during convergence of a cylindrical liner to the axis. The  decrease in 
the viscosity of the immr layers due to their stronger heating is compensated fi)r by the higher degree of 
COml)ression 1)ec~ause on the inner surface of the cylinder and adjacent  layers, the pressure increases with 

decrease  iI1 the radius of liner convergence. 
For convergence of an incompressible cylindrical liner to the axis, the Navier-Stokes equatious have 

the form 
Ou u Ou Ou 1 0t) 
0,--- 7 + -,. = 0, --0t + " ~ + -p --0r = 0. (6) 

The viscosity does not enter into Eqs. (6). It is given by the expression q(grad dip u - rot  rot u) ,  which is 
equal to zero in this case since dip u = 0 because of the incompressibility of the liquid and rot u = 0 because 
of the cylindrical symmetry of the flow. The viscosity is included in the boundary conditions. On the inner 
and outer surfimes of the liner, normal stress is absent (art  = 0). Since ~,,.~ = - p  + 2~lOu/Or, we  can write 

P ,.= R / O'u \ / Ou x = 2 ' , ; ~ ) , , = E  p ,'--~, (7) = �9 

Front the continuity equation (6), we have 

u = F ( t ) / , =  R R / r .  (8) 

Differentiating relation (5) with respect to tinm and substituting it into (8), we obtain 

, ,  = - ( i / ( 2 , - ) ) ( , , ~  ~ + t,). 

Hence, according to (7), the pressure on the inner surface of the cylindrical liner has the form 

P ,.=R : pu(a  + b /R2) .  (9) 

Tile pressure on the inner surface of the copper ring considered (u = 0 .7 .  104 cm2/sec) is estimated at 
245 kt)ar a t /?o  = 105 cm/sec and 720 kbar at/~0 = 1.5- 105 cm/sec when the iuside radius becomes equal to 
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Fig. t. Diagram of convergence of a viscous cylindri- 
cal liner to the symmetry axis. Pressure distribution 
over the liner thickness. 

0.06 cm. I t  should be noted t h a t  the value of tile kinematic-viscosity coefficient is chosen from a great body 

of experimental  data on collapse of copper cylinders by layers of 50/50 TNT/1R,DX of various thicknesses [2]. 
Precisely for this wdue of the kinematic viscosity, experimental and calculated curves of RI = Rl  (t) coincide 

during tile entire collapse of copper liners. 
For rough estimation of tile degree of compression of the material  near  the  inner surface of the cylinder, 

we use the following Tait equation of s ta te  for metals: 

p = B [ ~ "  - 1]. 

Here n and B are parameters  that  describe the liner material  (for copper,  B = 2.5- 10 2 kbar,  and n = 4). 

Hence we find that o- = 1.2 at /)o = 10s cm/sec  and o" = 1.4 a t / ) 0  = 1.5 �9 105 cm/sec.  
The  highest pressure is reached in the inner layers of the cylindrical liner. IntegTating the second of 

Eqs. (6) with respect to the radius and taking into account (8), we obta in  

( 1" , i'(R/)) :z 1 ~ ) - ( - 0 2 +  R/ ) ) ln-~ . ]  
,,(,. t) = w * , L - - 7  

where PR is defined by relation (9) and p is the density. The pressure reaches a max inmm value at ,',2ha x = 

(R/?)2/(/~ 2 + RR), which follows from tile condition O p / O , "  , , = O. Finally, the pressure distribution 
" :  "lu;tx 

over the liner thickness with t ime has the form (Fig. 1) 

2 . i ," 

and tile radius h)r which the pressure is maximal is given by 

r,,,ax = V/(R 2 + b/a)/2. (11) 

Exl)ression ([0) inchtdes t ime via tile dei)endence FI( t )  defined by relat ion (6). In i)articular, fl'om Eqs. (10) 
and ( l l )  it follows that  at a distance R = 0.06 cm from the symmet ry  axis for a copper ring moving at 

a velocity R0 = 105 era/see, the nltLx.innun pressure Pmax = 260 kl)ar, and at  /)0 = 1.5 kin/see,  we have 
Pn,ax = 1070 kbar. These examI)les show that  in tlm inner layers of the cylindrical liner, the eflix~t of the 

I)ressure on the dynamic-viscosity coefficient amounts to the fact that  tile value of this coefficient can remain 

unchanged (q = '/0) or even increase in sl)ite of the temI)eratm'e increase in the  layers adjacent to the inner 

surNce of the cylinder. 
Front tim calculations (see Tables 1 and 2) it follows that  for liner par t ic les  located at a distance ,'0 = 

1.01 cm the rates of increa~se in t empera ture  for copper and iron liners are 3- 108 and 109 K/see ,  respectively. 
Mar tynyuk [7] showed that  at heating times of 0.1-10.0 #see, overheat ing  of the meta l  liquid can 

proceed up to the limiting stable states determined t)y the spinodal. Under  real  conditions, overheating of 
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ttle liquid is hindered because the liquid already contains centers (for example,  gas inclusions). However, when 
the energy input is high, the fraction of the material evaporated through the free surface and the sm'face of 
nuclei is insignificant. In this case, there is a possibility for overheating of  the liquid and close approach to 
the spinodal, which is the boundary of thermodynamic stability of the metastable liquid that  corresponds 
to the liquid-wtpor transition. Estimates show that nearly linfiting overheating of the metastable  liquid is 
possible at :/~/> 1() s K/sec [7]. 

As the metastable liquid approaches the spinodal, fluctuations increase sharply. Wi th  intersection of 
the spinodal, the liquid phase loses thermodynamic stability and, as a result  of explosion, enters a two-phase 
state. The  liquid-vapor transition is determined primarily by the kinetics of homogeneous formation of vapor 
nuclei and not t)y the kinetics of evaporation through the interface. Format ion  of such nuclei is possible owing 

to the fluctuations in the liquid. 
At the same time, tim metastable liquid at T / T c  = 0.88 (Tc is the critical temperature)  has considerable 

stability against fluctuations, which increase sharply only with approach to the spinodal. At T/T(:  < 0.88, the 
transit ion of the metastable liquid to the two-l)hase state is determined by the mechanism of heterogeneous 
formation and growth of vapor nuclei. 

At the specified pressure, the overheated liquid has excess enthalpy. For a point on the spinodal, we 
have 

T~ 

/ H< - Ho = Cp dt. 

% 

who, re H0 is the enthalpy at the boiling point To and Cp is tile heat capaci ty  of tile liquid in the metastal)le 
region. In the explosive transition, this enthall)Y is expended in i)artial evaI)oration of the liquid, as a 
result of which the temperature  of the sysh'm (lecreases. The fraction of the liquid converted to vapor is 
J~ = (H., - Ho)/,\o (Ao is the heat of eval)oration at T = :/;)). Thus. the I)hase explosion is (:tmracterized by 
the heat effect tI~ - Ho and the, roh;ase of vapor/~.  

Calculations show that for the copl)er ring (see Tabt(; 1) even the  inner layer is not heated to the 
sl)inodal temperature T~. According to the Fm't spinodal equation, the spino(lal temperature  is determined 
from tit(, exl)ression P/P, .  = 1()(T/T,:) - 9, and at Ps = 0 it is equal to T.~ = 0.9[/c = 4900 K. Only wtmn 
the radius R = 0.1R0 is close to the radius of the copper cylinder R* = 0.05R0 [2] does the temperature  of 
the inner surface and the adjacent neighborhood exceed the spinodal t empera ture  5700 K (see Table 2). In 
this case, explosive eval)oration of the inner bwer with a heat effect H - Ho = 1.t k.J/g (see Table 2) and 
gas release z7 = 0.166 is possible. For the iron cylinder, even at the stage of motion with constant speed 
/7 = 105 cm/sec (see Table 1), the temperature of a b\ver with thickness 1 cni ~ r0 ~< 1.02 cm is higher than 
the sI)inodal temperature (7~ = 5700 K). For the inner layer of the iron cylinder, the explosion parameters 
are as tbllows: H - H0 = 3.4 k.l/g and l~ = 0.54. The heat effect of the explosion is comparable to that of an 

explosion of a TNT charge equal to 4.2 kJ/g. 
Thus. for cylindrical or conical (with a small cone angle) convergence of the liner material  to the axis, 

l)hase explosion is possible. Figure 2 shows an x-ray photograph of compression of a copper tube  (Rm = 1 cm, 
R0 = 0.9 cm./70 ~ 1 kin/see) by a 50/50 TNT/RDX l a ~ r  in the gliding detonation regime. The  measured 
angle of (:onvergcnce of the liner to the synnnetry axis is al)out 15 ~ Inside the tube there are distinct separate 
liquid fragments of the inner layers of the liner that formed after explosion of these layers. In Figs. 2-4. time 

reading begins front the moment of initiation of the charge. 
Figure 3 shows x-ray photograI)hs of compression of a coI)per tube  (Ri0 = 1.43 cm and R0 = 1.3 cm) 

60 mm high 1)y a conical charge, of 50/50 TN T/RD X  with a cone angle /3 = 30 ~ in the regime of gliding 
detonat ion I)ropagating from the l)ase to tim apex of the cone. In the region where the explosive layer is 
rather thick, tim cylindrical liner converges to the axis at a small angle. Therefore, in the upper  part of the 
liner, a phase explosion of the inner layers of the liner occurs, which u l t imate ly  leads to collapse of the upper 
part of the liner. In the liner regions located below along the pathway of the  detonation wave, the convergence 
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Fig. 2. X-ray photographs of compression of a copper cylindrical liner by a gliding, detonation wave 
propagating along a coaxial charge (from top to bottom) at t = 9.7 (a), 17.4 (b), and 22.4 ttsee (e). 

angle increa.ses progressively because the velocity of the, annular elenmnts of the  liner located ahead is higher 

than tile velocity of the elenlents that  ibllow tlwm since the exph)sive layer decreases progTessively during 

detonation. Indeed. in tile upper par t  of tile copl)er tube, the thickimss of the  explosive bwer reaches 19 ram, 
and in the lower part,  it is 2.7 mm. Then,  from tile Gurney formula, the accelerat ion velocity is [8] 

,, = v ~ a / ( k  ~ - 1)DpI(2 + #) = ~ D # I ( 2  + #), 
where # is the ratio of nmsses of the explosive and the projectile per unit  area.  As # --+ oo, we have a,t = 

D, and, hence, in the upper par t  of  tile tube, where tile value of # is large (# = 2.7), the acceleration 
~ loc i ty  remains ahnost unchanged and collapse proceeds at constant velocity u , .  In the lower par ts ,  where 

tt is small (# = 0.385 in the lower section of the tube), the acceleration veloci ty u2 = v / ~ D # / 2  decreases 

during detonat ion in proportion to # with simultaneous increase in the angle of  collapse. 
For large angles of convergence, the flow pattern changes, a shaped-charge  jet  and a pestle are formed, 

the picture of cylindrical liner collapse becomes two-dimensional, and the compression-velocity vector  is not 

directed along the normal to the symmet ry  axis of the cylindrical liner. F rom results of the exper iment  it 
follows tha t  tim heating is much lower for parts  of the liner that  converge a t  large angles to the axis. In this 

case, a phase explosion of the immr hwers of the liner does not occur. I t  is suggested that  for conical liners. 

tile inner layers must be heated more intensely h)r steel liners than for copper  liners, and. hence, steel .jets are 

heated more  intensely than  copper jets  (for shaped charges with identical parameters ) .  They  can undergo 
a smooth transition to the two-1)hase s ta te  as a result of heterogeneous fo rmat ion  of wtpor mwlei and their 

subsequent growth. Under slight overheating, phase transit ion of the me ta s t ab l e  liquid occurs mainly  as a 

result of growth of heterogeneous mmtei of vapor that  arise at tile available centers. Since the number  of 

these centers is small and the rate of motion of the interface is about several  meters  per second [7], tile time 

of phrase explosion is rather large (weak phase "explosion.") 
To clarify the effect of the physicomechanical properties of the liner mate r ia l  on the characterist ics of 

the jets formed, we perfornmd a series of experiments using flash radiography. In the experiments,  we used a 

50/50 T N T / R D X  charge, whose lower par t  contained a liner of various metals .  In the experiments ,  the cone 
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Fig. 3 Fig. 4 

Fig. 3. X-my photographs o[ coml)ression of a col)t)er cylindrical liner by a gliding detonation wave 
prol)a.gatin,,,, flong a coaxial charge from the base to at)ex of the cone (from top to bottom) at t = 16.5 (a) 
and 31.7 flse(: (b). 

Fig. ,l. X-ra.v t)hotographs oFsteel (a) and copper (I)) shap(~l charge jets from a shapedcharge with a 
('onica.l liner at time t = 37 flse(:. 

angle was varied (2(t = 30," 45, and 60 ~ and tile liner materials were various grades of steel (St. 3, St. 20, 
and 30KhGSA) and M-1 copper.  The densities of these metals are approximately identical, and, hence, 
tile kinematic  characteristics of tile shaI)ed charges remained unchanged for various liner materials. Ill flash 
radiography at  the same times, almost comi)lete coincidence of the patterns of liner deformation and free 
motion of  shai)ed-charge jets is observed (with sut)erimI)osition of negatives on each other). Simultaneously, 

we de termined  the depth of je t  penetration into a steel target. 
T h e  experiments show tha t  steel jets break into separate fragments while copper jets continue to stretch 

at the same tinms without visible rupture. The  elongation and breakup of a steel jet is accompanied by its 
softening (Fig. 4) and not by the "line formation" tyl)ical of copper jets at large elongation. Therefore, the 
depth of penetra t ion into targets  is alw~\vs smaller for s t~ l  jets than for copper jets. for example, for charges 
with a conical liner (2(t = 60 ~ at a distance of 150 mm from a steel plate, the penetration del)th is 195 mm 
ti)r a COl)per je t  and 1t0 mm for a steel jet (Fig. 4). We note that the breakup of a steel jet begins within 
20-25 #see after  arriwfl of the detonation wave at the conical liner apex and does not depend on the cone 

angle in the  examined range of angles 2a = 30-60 ~ 
Thus ,  during oI)eration of shaped charges with axisymmetric liners, overheating of the liner nmterial is 

possible. This  can initiate a s trong phase detonation of the immr layers even at the stage of liner (:omI)ression 
by the explosive (letonation products  or a weak l)hase "explosion," which leads to softening of the material 

at the stage of formation and motion of the shaped-charge jet. 
T h e  work was suppor ted  by the Russian Foundation for Fundamental Research (Grant No. 9%01- 

00826). 
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