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EFFECT OF ENERGY DISSIPATION
ON THE SHAPED-CHARGE FLOW REGIME

Yu. A. Trishin UDC 532.522+536.422.1

Convergence of a viscous shaped-charge liner to the symmetry axis is described. It is shown
that energy dissipation has a significant effect on the process considercd. Convergence at small
angles can lead to a strong phase erplosion of the metastable liquid of the inner. strongly
heated. layers of the liner, which is comparable to TNT explosion. An increase in the angle of
convergerice results in a weak phase “explosion,” which leads to different behavior of shaped-
charge jets for different types of liner material.

The main difference in the action of plane shaped charges and charges with axisymmetric liners lies
in the fact that during acceleration by an explosion, a wedge-shaped liner does not undergo considerable
deformations. An axisymunetric liner compressed by the detonation products of an explosive is subjected to
large deformations. under which the layers of the liner slide over each other. In this case, convergence of
the liner to the symmetry axis is significantly affected by the energy-dissipation mechanisins. For explosively
driven charges with plabe liners, energy dissipation is practically absent even in acceleration by a gliding
detonation wave because there is no sliding of the layers of the plate. This is suggested by the shape
of indicating wires pressed in the plate [1]. After oblique collision of the plates, the shape of the wires is
considerably distorted. especially near the collision surface. Hence, for plane charges, dissipation of mechanical
energy is possible only at the stage of collision and jet formation.

Considering cxplosive compression of cylindrical liners, Matyushkin and Trishin [2] showed experimen-
tally and theoretically that convergence of the liner to the symmetry axis is described most adequately by the
model of a Newtonian liquid. Hence, because of the action of viscous forces during collapse of axisymet-
ric liners, the energy-dissipation process should change the characteristics of the shaped-charge jets formed
depending on the type of liner material. In addition, it is possible to choose charge and cylindrical-liner
parameters such that the initial kinetic energy of the liner is completely converted to thermal energy and the
liner stops upon reaching a certain radius R* [2].

For approximate calculation of a shaped charge with a conical liner, the liner can be divided into a
number of rings by sections perpendicular to the axis of the cone and the rings can be assumed to move
independently of cach other.

For inertial motion of a ring of a viscous incompressible liquid. Matyvushkin and Trishin {2] obtained
the following ecuation of motion for the inner surface of a cylindrical liner of radius R:
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Here R, is the outside radius, Ryg is the inside radius at # = 0, Ry and Ry are the radius, respectively, of the

inner surface of the liner and its velocity at + = 0, and v is the kinematic-viscosity coeflicient.

RR = (RoRo + 4v) (1)
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TABLE 1 TABLE 2

Cu Fe ro,em | roem | AT, K | H, J/g
re, cm | r, cm - A

AT, K| H, J/g | AT\, K | H, I/g .00 | 0.10 | 5700 | 2180
LOO ) 1710 650 5?50 ggio 101 | 017 | 2760 | 1050
Lot | i 1420 540 4600 0 RO D 0

102 | 036 | 1210 160 3910 | 2500 Cos 1o |1 -
Lo3 | 039 | 1050 400 3000 | 1980 0 26 1 1500 570
5 3 105
105 | 044 | 830 320 2630 | 1720 LO5 ) 0.33 | 1060 405
1.07 | 048 680 260 2200 1410 1L.07 | 0.39 820 310
109 | 053 550 210 1790 | 1150 109 | 045 | 640 240
110 | 0.55 510 195 1660 | 1070 1.10 | 047 | 5% 225

From the condition of incompressibility of the liner it follows that

R} -R*=R}, - R}= A% (2)
The specific power of dissipation forces is
dE (RR)?
= =
dt Yo

where r is an independent variable (R < r < R)) and E is the specific energy. From the incompressibility
of the liner it follows that r2(t) = R%(t) + 1} — R3, where g is the initial radius of a particle located in the
depth of the liner (Ry < rg < Rig). Hence, in the adiabatic approximation for a particle with radius rg. we
obtain the temperature increment

R2ZR?

dv
AT =2 /—————,—,,df. 3
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where ¢ is the specific heat of the liner. It is possible to find an approximate solution of Eq. (3). taking into
account that at the initial stage of collapse, R differs from Ry only slightly [3]. Then, relation (3) becomes

t.
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where ¢, is the time during which R differs from Ry only slightly.
If we set R = Ry — Ryt, the first integral ATj is easily evaluated:

: » 1 — RV 2 _p2
AT = 2vRy = R2 5 — E)Q + —==——=5 arctan (RO,, R.,) ro— Ry
¢ |R:+r$-R3 15 JrZ-R; rg — R+ RoR.

To determine AT) when the inner surface of the ring approaches the axis (R — 0), we expand the
denominator of relation (1) in a series and, using (2), we obtain its value (1/2)In(4%/R?) = (4/3)(1 — 3<)
with accuracy up to £2 = (R*/A?%)2. Then, from Eq. (1) we have

R* = (R? + b/a)exp (—ar) — b/a. (5)
where a = (2.598/A42)(RoRo + 4v)(In (R10/Ro))/?, b = 0.667A% — 8v. and 7 = t — t.. From relations (4)
and (5) we obtain

arv

B exp(—ar)+ B
L = —— - In (SRATAT T 2N
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where B = (r3 — R — b/a)/(R? + b/a). Results of calculation of the temperature distribution AT} over the
thickness of copper and iron rings with R. = 0.3Rp are presented in Table 1, and the temperatures ATy
for copper rings at R = 0.1Rp are given in Table 2 (AT = AT\, + AT5). For both rings, the initial velocity
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is Ry = 10° cm/sec and the initial geometrical dimensions By = 1 cm and Ryp = 1.1 cm are identical.
They differ only in the kinematic-viscosity coefficient v, which, at an initial strain rate of about 10° sec™!.
(0.7-1.0) - 10* em?/sec for copper [2, 4] and (3.8-5.1) - 10* cm?/sec for iron [5]. For radial convergence of a
cylindrical liner, the strain rate is defined by

. R{)R() ( 1 1 )

T % \R JATrRI)
where 8y = Ry1p — Rp. In the calculations, the specific heats of copper and iron were set equal to 0.382 and
0.61J/(g-K).

The heating due to viscosity is nonuniform over the thickness of the liner material and increases during
convergence of the liner to the center. Maximum increase in temperature is attained on the inner surface
of the liner. An increase in temperature changes the properties of the liner material and. in particular, the
dynamic-viscosity coefficient.

According to the Frenkel'-Airing theory [5], developed for liquids and used in [6] to describe experiments
on shock-wave loading of metals up to the melting point. the dynamic-viscosity coefficient n of a liquid is
related to the temperature T and the degree of compression o by the formula

{0, T) = noo exp |Ea(c)/T).

is

From physical considerations it follows that for the work related to viscous motion during formation of
vacancies, the activation energy E, has the form E, = A + Bo>. The constants A and B were determined
from shock-wave experiments in metals.

For aluminum and lead, it is established experimentally [6] that with increase in the shock-wave
intensity, the viscosity initially increases and then, passing through the maximum at ¢ &= 1.4, decreases. The
nontrivial dependence of the viscosity coefficient on the shock-wave intensity can be explained qualitatively
by competition of the processes related to compression of the material and thermal processes.

A similar situation is observed during convergence of a cylindrical liner to the axis. The decrease in
the viscosity of the inner layers due to their stronger heating is compensated for by the higher degree of
compression beeanse on the inner surface of the cylinder and adjacent layers, the pressure increases with
decrease in the radius of liner convergence.

For convergence of an incompressible cylindrical liner to the axis, the Navier-Stokes equations have
the form —

du u Ou Ju 10p

707-4‘7:(). §+1L:‘)‘—I“+;E—_
The viscosity docs not enter into Eqgs. (6). It is given by the expression 7(graddive — rotrotu), which is
equal to zero in this case since divu = 0 because of the incompressibility of the liquid and rot « = 0 because
of the cylindrical symmetry of the low. The viscosity is included in the boundary conditions. On the inner
and outer surfaces of the liner. normal stress is absent (o, = 0). Since o, = —p + 2n0u/Or, we can write

=215, 5

Plicr, = 27)(E)r=l?1. M
From the coutinuity equation (6), we have
w=F(t)/r = RR/r. (8)
Differentiating relation (5) with respect to time and substituting it into (8). we obtain
w=—(1/(2r))(aR* +b).
Hence. according to (7), the pressure on the inner surface of the cylindrical liner has the form

Pl = pvia +b/R?). (9)

r=

0. (6)

The pressure on the inner surface of the copper ring considered (v = 0.7 - 10* cm?/sec) is estimated at
245 kbar at Ry = 10° cm/sec and 720 kbar at Ry = 1.5 - 10° cm/sec when the inside radius becomes equal to
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Fig. 1. Diagram of convergence of a viscous cylindri-
cal liner to the symunetry axis. Pressure distribution
over the liner thickness.

0.06 cm. It should be noted that the value of the kinematic-viscosity coefficient is chosen from a great body
of experimental data on collapse of copper cylinders by layers of 50/50 TNT/RDX of various thicknesses [2].
Precisely for this value of the kinematic viscosity, experimental and calculated curves of R; = R, (t) coincide
during the entire collapse of copper liners.

For rough estimation of the degree of compression of the material near the inner surface of the cylinder,
we use the following Tait equation of state for metals:

p=Bo" -1].

Here n and B are parameters that describe the liner material (for copper, B = 2.5 - 102 kbar, and n = 1).

Hence we find that 0 = 1.2 at Rg = 10° em/sec and o = 1.4 at Ry = 1.5 - 10° em/sec.
The highest pressure is reached in the inner layers of the cylindrical liner. Integrating the second of

Egs. (6) with respect to the radius and taking into account (8), we obtain

(RR? /1 1
(1 t) = +)[ (—.—f
plrt)=pr+p|~5\m~ 2

.. . T
~(R*+RR)In —}.
)~ (7 + Ry
where pp is defined by relation (9) and p is the density. The pressure reaches a maximum value at i, =

(RI"?)"2 / (R2 + RR) which follows from the condition Jp/Or

over the liner thickness with time has the form (Fig. 1)

wn-ale ) @ DL ) (b))

and the radius for which the pressure is maximal is given by

Fmax = V (R.) + b/a)/2 (11)

Expression ('0) includes time via the dependence R(t) defined by relation (6). In particular, from Eqgs. (10)
and (11) it follows that at a distance R = 0.06 cm from the symmetry axis for a copper ring moving at
a velocity Ry = 10 cm/sec, the maximum pressure prax = 260 kbar. and at Ry = 1.5 km/sec. we have
Pmax = 1070 kbar. These examples show that in the inner layers of the cylindrical liner, the effect of the

= 0. Finally, the pressure distribution

I'=ruax

pressure on the dynamic-viscosity coefficient amounts to the fact that the value of this coefficient can remain
unchanged (1) = 19) or even increase in spite of the temperature increase in the layers adjacent to the inner
surface of the cylinder.
From the calculations (see Tables 1 and 2) it follows that for liner particles located at a distance 1o =
1.01 cm the rates of increase in temperature for copper and iron liners are 3-10% and 10° K/sec, respectively.
Martynyuk [7] showed that at heating times of 0.1-10.0 usec, overheating of the metal liquid can
proceed up to the limiting stable states determined by the spinodal. Under real conditions, overheating of
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the liquid is hindered because the liquid already contains centers (for example, gas inclusions). However, when
the energy input is high, the fraction of the material evaporated through the free surface and the surface of
nuclei is insignificant. In this case, there is a possibility for overheating of the liquid and close approach to
the spinodal, which is the boundary of thermodynamic stability of the metastable liquid that corresponds
to the liquid-vapor transition. Estimates show that nearly limiting overheating of the metastable liquid is
possible at T > 10% K/sec [7].

As the metastable liquid approaches the spinodal, fluctuations increase sharply. With intersection of
the spinodal, the liquid phase loses thermodynamic stability and, as a result of explosion. enters a two-phase
state. The liquid-vapor transition is determined primarily by the kinetics of homogeneous formation of vapor
nuclei and not by the kinetics of evaporation through the interface. Formation of such nuclei is possible owing
to the fluctuations in the liquid.

At the same time, the metastable liquid at T'/T, = 0.88 (T is the critical temperature) has considerable
stability against fluctuations, which increase sharply only with approach to the spinodal. At T/T,. < 0.88, the
transition of the metastable liquid to the two-phase state is determined by the mechanisin of heterogeneous
formation and growth of vapor nuclei.

At the specified pressure, the overheated liquid has excess enthalpy. For a point on the spinodal, we
have

T,
Hs - H() = / def

To

where Hy is the enthalpy at the boiling point Ty and C), is the heat capacity of the liquid in the metastable
region. In the explosive transition, this enthalpy is expended in partial evaporation of the liquid. as a
result of which the temperature of the system decreases. The fraction of the liquid converted to vapor is
3. = (H, — Hy)/ Mo (Mg is the heat of evaporation at T = Tj). Thus. the phase explosion is characterized by
the heat cffect H, — Hy and the release of vapor ..

Calculations show that for the copper ring (see Table 1) even the inner layer is not heated to the
spinodal temperature 7. According to the Furt spinodal equation, the spinodal temperature is determined
from the expression P/P. = 10(T/T,.) — 9, and at P; = 0 it is equal to T, = 0.97; = 4900 K. Only when
the radius R = 0.1Ry is close to the radius of the copper cylinder R* = 0.05Ry [2] does the temperature of
the inner surface and the adjacent neighborhood exceed the spinodal temperature 5700 K (see Table 2). In
this case, explosive evaporation of the inner layer with a heat cffect H — Hy = 1.1 kJ/g (see Table 2) and
gas release 3 = 0.166 is possible. For the iron cylinder, even at the stage of motion with constant speed
R=10° cm/see (sce Table 1), the temperature of a layer with thickness 1 cm < rg < 1.02 cm is higher than
the spinodal temperature (7 = 5700 K). For the inner layer of the iron cylinder, the explosion parameters
are as follows: H — Hy = 3.4 kJ/g and 3 = 0.54. The heat effect of the explosion is comparable to that of an
explosion of a TNT charge equal to 1.2 kJ/g.

Thus. for cylindrical or conical (with a small cone angle) convergence of the liner material to the axis,
phase explosion is possible. Figure 2 shows an x-ray photograph of compression of a copper tube (Rjo = 1 cm,
Ry=09cm. Ry~ 1 km/sec) by a 50/50 TNT/RDX layer in the gliding detonation regime. The measured
angle of convergence of the liner to the symmetry axis is about 15°. Inside the tube there are distinct separate
licuid fragments of the inner lavers of the liner that formed after explosion of these layers. In Figs. 2—-4. time
reading begins from the moment of initiation of the charge.

Figure 3 shows x-ray photographs of compression of a copper tube (R1g = 1.43 cm and Ry = 1.3 ¢m)
60 mm high by a conical charge of 50/50 TNT/RDX with a cone angle 3 = 30° in the regime of gliding
detonation propagating from the base to the apex of the cone. In the region where the explosive layer is
rather thick, the cyvlindrical liner converges to the axis at a small angle. Therefore, in the upper part of the
liner, a phase explosion of the inner layers of the liner occurs, which ultimately leads to collapse of the upper
part of the liner. In the liner regions located below along the pathway of the detonation wave, the convergence

581



Fig. 2. X-ray photographs of compression of a copper cylindrical liner by a gliding detonation wave
propagating along a coaxial charge (from top to bottom) at t = 9.7 (a), 17.4 (b), and 22.4 usec (c).

angle increases progressively because the velocity of the annular elements of the liner located ahead is higher
than the velocity of the elements that follow them since the explosive layer decreases progressively during
detonation. Indeed. in the upper part of the copper tube, the thickness of the explosive layer reaches 19 mm,
and in the lower part, it is 2.7 mm. Then, from the Gurney formula. the acceleration velocity is 18]

u=\/3/(K = 1)Dp/(2+ ) = V/3/8Dp/(2 + p),

where p is the ratio of masses of the explosive and the projectile per unit area. As g — 0o, we have u; =
\/’:SRD. and, hence, in the upper part of the tube, where the value of g is large (u = 2.7), the acceleration
velocity remains almost unchanged and collapse proceeds at constant velocity u). In the lower parts, where
g is small (u = 0.385 in the lower section of the tube), the acceleration velocity us = \/m Dyi/2 decreases
during detonation in proportion to g with simultaneous increase in the angle of collapse.

For large angles of convergence, the flow pattern changes, a shaped-charge jet and a pestle are formed.
the picture of cylindrical liner collapse becomes two-dimensional, and the compression-velocity vector is not
directed along the normal to the synunetry axis of the cylindrical liner. From results of the experiment it
follows that the heating is much lower for parts of the liner that converge at large angles to the axis. In this
case, a phase explosion of the inner layers of the liner does not occur. It is suggested that for conical liners.
the inner lavers must be heated more intensely for steel liners than for copper liners. and. hence, steel jets are
heated more intensely than copper jets (for shaped charges with identical parameters). They can undergo
a smooth transition to the two-phase state as a resnlt of heterogeneous formation of vapor nuclei and their
subsequent, growth. Under slight overheating. phase transition of the metastable liquid occurs mainly as a
result of growth of heterogeneous nuclei of vapor that arise at the available centers. Since the number of
these centers is small and the rate of motion of the interface is about several meters per second {7}, the time
of phase explosion is rather large (weak phase “explosion.™)

To clarify the effect of the physicomechanical properties of the liner material on the characteristics of
the jets formed, we performed a series of experiments using flash radiography. In the experiments, we used a
50/50 TNT/RDX charge, whose lower part contained a liner of various metals. In the experiments, the cone
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Fig. 3 Fig. 4

Fig. 3. X-ray photographs of compression of a copper cylindrical liner by a gliding detonation wave
propagating along a coaxial charge from the base to apex of the cone (from top to bottom) at t = 16.5 (a)
and 31.7 psec (b).

Fig. 4. X-ray photographs of steel (a) and copper (b) shaped charge jets from a shapedcharge with a
conical liner at time ¢ = 37 psec.

angle was varied (2« = 30, 45, and 60°) and the liner materials were various grades of steel (St. 3. St. 20,
and 30KhGSA) and M-1 copper. The densities of these metals are approximately identical, and, hence,
the kinematic characteristics of the shaped charges remained unchanged for various liner materials. In fash
radiography at the same times, almost complete coincidence of the patterns of liner deformation and free
motion of shaped-charge jets is observed (with superimposition of negatives on each other). Simultaneously,
we determined the depth of jet penetration into a steel target.

The experiments show that steel jets break into separate fragments while copper jets continue to stretch
at the same times without visible rupture. The elongation and breakup of a steel jet is accompanied by its
softening (Fig. 4) and not by the “line formation” typical of copper jets at large elongation. Therefore, the
depth of penetration into targets is always smaller for steel jets than for copper jets. for example, for charges
with a conical liner (2a = 60°) at a distance of 150 mm from a steel plate, the penetration depth is 195 mm
for a copper jet and 110 mm for a stecl jet (Fig. 4). We note that the breakup of a steel jet begins within
20-25 psec after arrival of the detonation wave at the conical liner apex and does not depend on the cone
angle in the examined range of angles 2a = 30-60°.

Thus, during operation of shaped charges with axisymmetric liners, overheating of the liner material is
possible. This can initiate a strong phase detonation of the inner layers even at the stage of liner compression
by the explosive detonation products or a weak phase “explosion,” which leads to softening of the material
at the stage of formation and motion of the shaped-charge jet.

The work was supported by the Russian Foundation for Fundamental Research (Grant No. 97-01-
00826).
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